
July 23, 2007

Learning Ruby on Rails

Here there be Magick!
(with apologies to Piers Anthony)

Presentation to 

eBIG
Web Development SIG

Copyright © 2007, EDP Consulting, Inc. – Permission granted to copy with attribution.



Why are you here?

• Check the hype?
• Learn how to get started?
• Learn some new tricks/
• …???



What’s your background?

• Never looked at Rails?
• Played around with it?
• Developed a public site?
• Guru?
• …?



My background

• Started programming in 1967 – UF Computer 
Center:

• My own water-cooled (personal) IBM 360 computer!

• Many different languages/systems: 
Assembler language, APL, C, CICS, Cobol, 
Control RDBMS, DBASE, Fortran, MS 
Access, Paradox, Perl, PL/1, REXX, Theos, 
Unix, Visual Basic…

• Mostly management consulting for the past 
15+ years



What I wanted to do

• Build database-backed web applications
• On my list since before Web 2.0
• Tried GoLive/Dreamweaver <ugh!>
• Looked at some commercial systems <$!>
• Tried Perl frameworks <ugh!>
• Tried writing Ajax direct <whew!> 

(simple app)
• Tried Rails <mmm! (sorta)>



My approach

• Read a bunch for starters
• Build Your Own Ruby on Rails Web Applications

<good starting point>
• Agile Web Development with Rails <heavy going in places but this is 

the one book you gotta have>
• Ruby for Rails <good 2nd book>
• Ajax on Rails <too specialized for beginners>
• Programming Ruby <the classic ‘PickAxe’ book>
• Rails Recipes <great ideas… some actually work!>
• Rails Cookbook <basic, starter samples…good>
• Ruby Cookbook <solid code samples>
• Pragmatic Version Control Using Subversion

• Follow along with book’s code
• Only good up to a certain point
• Lots of code that doesn’t work

• Build a usable application and make it public!
• 4mypasswords.com



Our webapp criteria

• Must be 
– Something I would use
– Offered to the public
– Free of ongoing administration
– Memorable domain name (short…)
– Relative quick/easy to implement in a basic form
– Have an option for a revenue model if successful



4MyPasswords.com

• Place to store sensitive information on the 
web 

• (e.g., passwords, credit card info, registration or 
serial number information, …)

• SECURE
• Easy to use

• For me: replace Coda Hale’s Genius utility 
that I’ve been using for years

– Too many different machines I use
– At different client locations



1st Step…

• Pretty straight-forward:
– Get the tools (Instant Rails, Aptana/RadRails, 

Firebug, Source Chart, Session Manager, Web 
Developer)

• (too bad: I like Vim)

– Understand the MVC approach (tutorial)
– Create an application structure
– Create a simple database
– Create a simple interface (scaffolding!)
– Actually use it for stuff!

• Internal “Ideas” application
• Internal “Booklist” application

http://instantrails.rubyforge.org/
http://www.aptana.com/
https://addons.mozilla.org/en-US/firefox/addon/1843
https://addons.mozilla.org/en-US/firefox/addon/655
https://addons.mozilla.org/en-US/firefox/addon/2324
https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/60


1st Results…

• Create a simple app in about 1 hour
• Cool!



Easy to scratch the surface…

STEEP learning curve after that!
(As easy as falling off a cliff)



“Any sufficiently advanced technology
is indistinguishable from magic.”

Arthur C. Clarke



2nd Step…

• Going beyond the 1st simple steps was much 
harder/more time consuming…

• Spent TONS of time Googling for info…
• Collected many cheat sheets from the web…
• Started creating my own cheat sheets for specific tasks…
• Rails wiki deluged with porn spam (wiki.rubyonrails.org)

– NB – This has since been fixed with Wiki security

• Forums: Some great help; some non-responsive; many 
assumptions about how much people know

• East Bay Ruby Meetup Group – Lots of help!
– Bottom line: a great community

• RailsPlayground.com – EXCELLENT support while I was 
getting things up and running (and I needed it :-) !

http://wiki.rubyonrails.org/
http://ruby.meetup.com/81/
http://www.railsplayground.com/


Taking that 2nd step…

• Get as much ‘off the shelf’ as possible:
– User/Login system:

– LoginGenerator (replaced by Acts_as_authenticated)

– Improved scaffolding:
– Ajaxscaffold.com (now ActiveScaffold.com)

– Encryption/decryption:
– EzCrypto.rubyforge.org

– Rails webhosting:
– RailsPlayground.com

– CSS template:
– minimalistic-designs.com

• SSL – Thawte certificate

http://wiki.rubyonrails.org/rails/pages/LoginGenerator
http://wiki.rubyonrails.com/rails/pages/Acts_as_authenticated
http://activescaffold.com/
http://ezcrypto.rubyforge.org/
http://www.railsplayground.com/
http://www.minimalistic-designs.com/


It works – and folks can use it!

https://www.4mypasswords.com/

nubyrubyrailstales.blogspot.com/

https://www.4mypasswords.com/
http://nubyrubyrailstales.blogspot.com/


What I like love about Rails…

• Framework & scripts
• Migrations
• WEBrick / Mongrel
• Conventions…?
• Pluralization…?
• { Wiki / Api }.rubyonrails.org
• Documentation; e.g., api.rubyonrails.org
• ActionMailer

• But it’s a little weird

http://api.rubyonrails.org/


What I like love about Rails…

• Deprecation warnings…
– Rails is a very young framework
– There is intense development going on to extend 

the framework
– There are many changes happening, not necessary 

all documented nor blindingly obvious…

• Pretty good tools (e.g., Aptana, …)
• But I wish there were a Vim option
• VI Improved (www.vim.org) has a great Rails plugin, 

but no visual directory tree presentation

http://www.vim.org/


…and what I wonder about
• What happened to script/help?
• Pluralization…?

• Conventions not followed:

• …and CamelCase versus camel_case
• script/generate ProductBacklog ≠> product_backlog

• …and just who is it “intuitive” to… Non-English speakers?
• belongs_to :user
• has_many :users
• has_and_belongs_to_many :users

• …and then there are collections
• :client versus :clients ?



… and what I wonder about (2)

• Things are broken:
• RadRails update fails
• Ruby update fails
• NB: Now fixed with Aptana!

• Installing a plugin is counter-intuitive:
• Sites say “do this” (script/plugin install…)
• RadRails says “do this” (plugin create…)
• Finally: just copy the stuff into the right directory!

• Fast changing
• Deprecations – I’m just learning; why do I have all 

these recommended solutions with warnings…?



… and what I wonder about (3)

• Gaining familiarity with all the “auto-magical” stuff
• Soooo many special helpers, RJS, methods, …
• Database collation defaults (not Rails?)

• Documentation
• Scattered (rubyonrails.org, rubyforge.org, individual 

websites, …)
• Inconsistent
• Missing

• Search engine visibility…?
• MySQL implementation: pure Ruby vs C gem…?
• Mysterious interactions… (e.g., Rails Recipe 34)



… and what I wonder about (4)

• Claim that you don’t need to know Javascript…
– Well, you certainly have to be able to handle “snippets”

of Javascript, as well as understand Protocol and 
script.aculo.us commands!



To be done…

• Subversion – DONE!
• Testing – Just getting started
• ActiveScaffold…?
• CSS/GUI interface updates
• User interface/functionality 

• E.g., password changes…

• Capistrano – Got it working!
• Documentation
• XML Export/Import
• …?



Reasons I prefer Rails over .NET 
(Jeff, on 'Softies on Rails')

1. Ruby. The language is just awesome for object-oriented development. Remember, I was a longtime C++ developer, and C# 
after that, so I've always loved statically-typed OO languages. But I usually get more done with Ruby in less time.

2. ActiveRecord. The easiest ORM I've ever used (again, it's mainly because of Ruby's language features that make this 
possible)

3. Forced MVC design. There are other great architectures for the web, but for database-backed apps, MVC is fine 80% of the 
time; so for that sweetspot, Rails makes it easy.

4. TDD support. To call it "support" is to understate it. Rails expects TDD, and so it's a first-class citizen in the application 
skeleton. The best Rails developers I know all use TDD. It's the only framework I know that doesn't just "allow" you to do TDD, 
it assumes you ARE doing TDD, and makes it easy to do so.

5. Ajax support out of the box. And in a clean way that again leverages Ruby to its fullest. There's almost no mental context 
switch between writing Ajax and non-Ajax code - it's all Ruby, same idioms, same "feel" of where your code should go.

6. Agile development baked in. Like TDD, everything about a Rails app skeleton screams for best practices, and it goes out of 
its way to induce you to keep your code DRY, refactor often (this is why the TDD aspect is so important), and build 
incrementally.

7. Limited choices coerce you into following Rails' best practices. Some people call it the "opinionated" side of Rails. I call it
standing on the shoulders of giants who've already figured out good ways to stitch together the various tiers of a web app. The 
REST support in Rails is a great example of how average developers become good developers if they follow Rails opinion on 
how you should think about your application.

8. Database agnosticism. There's built-in support for, I don't know, about eight popular databases, and it's almost 100% 
transparent.

9. OS agnosticism. I develop Rails sites on Windows as easily as I do an a Mac or Linux (ok, I sort of take that back; the tool 
support isn't quite there on Windows, and the refusal of Microsoft to include a gnu-compatible C compliler with Windows keeps 
guys like me behind the rest of the pack).

10. It's fun. Sounds weird, I know. But it's not just me saying that. The ease with which I can start building an app and see results, 
with tests from the start, make it more fun to work on Rails apps.

11. It's all free.
12. The Rails core is kept to a minimum. There's more power with a lot less API "surface area" than any other framework I 

know. Most Rails developers don't need intellisense, because it's much easier to just know what to do; and when you're not 
sure, everything is so consistent between classes, it's much easier to just guess the right thing to do.

13. Plugins from the community. Awesome.

http://softiesonrails.com/


What’s the Verdict?

• Rails is awesome…
• …and has some maturing to do

• And I love it!



“Rails is full of magic, and database connectivity 
is a particularly magical area of the framework.”

Rails Recipes
Recipe #15, p65

Chad Fowler



July 23, 2007

Building a Simple Application



ActiveRecord magic…

• User.<col_name> for all columns defined
• User.id
• Basic CRUD methods (new, create, save, update, 

update_attributes, delete, destroy, …)
• User.find(…) - :first, :all, :conditions => …
• User.find_by_<col_name>
• User.find_by_<col_name1>_and_<col_name2>
• User.find_all_by_<col_name>
• Average, maximum, minimum, sum, count
• …



More ActiveRecord magic…

• When you create relationships between models, 
you get lots more methods. Assume you have 
the following:

• User Class has_many :accounts
• Account Class belongs_to :users

• Then you get:
• @account.user.<col_name> for every column in the users 

table

• You can also create a many-to-many…
• Article has_many :readings

has_many :users, :through => :readings
• User has_many :readings

has_many :articles, :through => :readings



ActiveRecord Migrations…

• Create a migration either through creating a 
model or explicitly

• Update your database/table definitions as 
you need to

• Back out changes that didn’t work
• Modify data during a migration if you need to 

upgrade the data

• One of my favorite features in Rails



Doing some Ajax…

• Simplest form is a “link_to_remote”

• Then there’s the “periodically_call_remote”

• And… “link_to_function”, “remote_function”, 
“observe_field”, “observe_form”, “form_remote_tag”, 
“remote_form_for”, “render :partial =>”, …



RESTful development…

• Simple to setup the basic structure:



Trade for services?

• I’ve got a SuSE 
Linux machine 
running, and would 
like to get it set up 
for development.

• I’ve got a running 
Sun Classic X 
system for trade.

Jon Seidel, CMC®
Jseidel AT edpci DOT net


	Learning Ruby on Rails
	Why are you here?
	What’s your background?
	My background
	What I wanted to do
	My approach
	Our webapp criteria
	4MyPasswords.com
	1st Step…
	1st Results…
	2nd Step…
	Taking that 2nd step…
	It works – and folks can use it!
	What I like love about Rails…
	What I like love about Rails…
	…and what I wonder about
	… and what I wonder about (2)
	… and what I wonder about (3)
	… and what I wonder about (4)
	To be done…
	Reasons I prefer Rails over .NET �(Jeff, on 'Softies on Rails')�
	What’s the Verdict?
	Building a Simple Application
	ActiveRecord magic…
	More ActiveRecord magic…
	ActiveRecord Migrations…
	Doing some Ajax…
	RESTful development…
	Trade for services?

